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Fig. 4. Relation between S parameters of semi-ideal circulators.

where it has been assumed that one has symmetrical splitting:
(61)

In semi-ideal circulators, Su and Sz are completely determined
by Siz, provided it is assumed that the amplitudes of s, and s are
equal and the splitting is symmetrical. This means that the latter
quantity can be obtained simply by measuring either Sy or S

The first case to be considered is the one in which the angle
between s4; and s_; is such that Si; =0. This condition is obtained by
setting S; =0 in (58). The relation between Siz and Si; is given
graphically in Fig. 4.

The second case to be considered here is the one in which the
angle between 5,1 and s_; is such that Si;=0. This condition is ob-
tained by setting Si3=0 in (60). The relation between Sy and Siz
is shown in Fig. 4.

6.1 = -0

VII. CoNcLUSIONS

The relation between the dissipation and scattering eigenvalues
in lossy junctions has been given. The results have been used to
directly construct the scattering matrices of a number of 3-port
lossy junctions. These results can also be applied to junctions with
unequal dissipation eigenvalues that lead to asymmetric frequency
responses of the scattering parameters,
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Correction to “Scattering by a Ferrimagnetic Circular
Cylinder in a Rectangular Waveguide”

N. OKAMOTO axp Y. NAKANISHI

In the above paper,! sin™! ¢in (17) (Section I11-B, p. 524) should
be interpreted as = —Sin~! £, where Sin™! { denotes the principal value
of sin~! ¢. Therefore, (23) and (24) should read as follows:

) 4
Su= 3 (14, —— sin (@— 5 Sin1 T ()
e Bia a koa
and
= 4 :
Su=1+ 3 An— sin (’—rﬁ+n5in—1l) )
P— Bia a koa

respectively. Accordingly, Table I should be modified as shown.
The corrected numerical evaluation of | S| 2+ ] Su | 2shows that the
unitary condition of the S-matrix is satisfied within a roundoff error
for any value of parameters. This is due to the fact that the unitary
conditions of the S-matrix is guaranteed for any size of truncation in
our formulation of the paper [1]. The following is a proof of this
property. The electric field outside the post is expressed as follows:
2 A X

Rseroo 2=—c0

& . X
E, = Ey 2_ Ja(po")e 00+ sin (1—:7(1 + na) + Eo

[Ho® (o) e intst — (—1)nH, @ (p)eme—],  (3)

Consider a region enclosed by two contours ABCDA and F, as shown
in Fig. 1. Application of the two-dimensional Poynting theorem to
this region yields

1 1
- —_ x’ _ *
Re [2 f (B fDCE,Hz dx:l
1
+ Re [—55 E,Hg*dl:l —0. 4
20 F

On the contour AB and DC far from the post, E; in (3) can be re-
written in the form

E, = Lo sin "2 (i1 - Sy,000) (5)
a
and
X
E. = Eysin —.Sye16v 6)
a

respectively. Substitution of (5) and (6) and their corresponding
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Fig. 1. Contours along which Poynting integrals are evaluated,
TABLE I
CoMPUTED VALUES FOR |Su |24 |Su|?
Oy k,B= 0,05 kR =0.1
0.57 0.9992999 0.9999999
0.5% 0.9999999 0.9999999
0.59 0.9999999 0.9999999
0.60 0.9999999 0.9999999
TABLE 11

COMPUTED VALUES FOR 531 AND .Sy WHEN %£,R =0.05

1 4
((1) and (4) stand forz andz , respectively)

n=—1 n=-—4
0y, Su San
0.584 0.32193 £-73.892° 0.94676 £16.107° (1)
0.32193 £-73%.892° 0.94676 £16.107° (1)
0.586 0.99755 £ ~0.96237° 0.029818 £89.037° 1)
0.99955 £~0.96257° 0.029818 £ 89.037° ()
0.588 0.27685 £ 71.°57° 0.96091 £ ~18.742° (1)
0.27635 £ 71.257° 0.96091 £-18.742° )

magnetic field components into the first term on the left-hand side of
(4) yields

Eozﬁa
dwpo

{1Sulr+ | Sulz—1} = —Re BSQFE,Hs*dl]. N

783

On the contour F, E, can be rewritten in the form

E.=Ey 3, [ J,() sin (lrﬁ + Pa) + 75 2 Aukny

> a
+ AH,P0 |- ®)
and then the corresponding magnetic field component is given by

Ee
Hy= -3
Jwie  p

v/’ (v) sin (Zr? + pa) + oJ, (@) X, Anbinp

g—ind
+ A, @) |- 5 ©)
where v=koR. Boundary conditions lead to equations
. {mxo
7@ sin (T2 4+ ) + 750 T Aoy + AH, D) = BT,

o' (v) sin (’—? + pa) + o7y (0) 32 Anhup + AwH,® (v)
= By[MuJ,/(w) — KpJy)]. (10)
Hence from (7), (8), (9), and (10), it is obtained that

T

Be O sulr+ [ Sult— 1) = —Re {.——Z | B, |27(w)
Jwuo  a

4o
(M) — Kn],.(u)JE- —0. 1)

This proves that the unitary condition always holds for any size of
(10).

As can be seen from the preceding discussion, the unitary condi-
tion cannot be used as a check for error due to the truncation. In
our formulation of the paper [1], only the numerical convergence of
Su and Sa: through (31) serve as a check.

To see numerical convergence of Su and Su, a comparison of
3 i _1and 4. _4shasbeen made around the dipolar resonant point
Q=0n+3%, which appears in case of vanishingly small diameter of a
ferrimagnetic cylinder (see Table II). Here, koR is set to 0.05 asin [L].

From these results it is seen that a solution for »=—1 has
sufficient accuracy as far as the dipole resonance is concerned.




